The present paper deals with a novel, alternative excitation device for vibratory feeders which is based on the use of smart materials for motion generation. In particular, the paper investigates how to improve the performance of a vibratory conveyor by replacing the traditional electromagnetic actuator with a new excitation system based on innovative dielectric elastomer membranes. One of the main research goals consists in the design of the dielectric elastomer actuator (geometry, number of membrane layers) in order to ensure to the conveyor the same basic vibratory performance of a conveyordriven by electromagnetic actuator. At the same time, it is expected that the novel actuator solution leads to improved characteristics in terms of energy consumption and weight. A comparative performance analysis has been carried out in terms of frequency, transient, energy, and power responses. The simulation tests performed to characterize the dynamic behavior of the system have been described along with the promising preliminary results.

Simulation Analysis and Performance Evaluation of a Vibratory Feeder Actuated by Dielectric Elastomers

Pirani, Massimiliano;
2018-01-01

Abstract

The present paper deals with a novel, alternative excitation device for vibratory feeders which is based on the use of smart materials for motion generation. In particular, the paper investigates how to improve the performance of a vibratory conveyor by replacing the traditional electromagnetic actuator with a new excitation system based on innovative dielectric elastomer membranes. One of the main research goals consists in the design of the dielectric elastomer actuator (geometry, number of membrane layers) in order to ensure to the conveyor the same basic vibratory performance of a conveyordriven by electromagnetic actuator. At the same time, it is expected that the novel actuator solution leads to improved characteristics in terms of energy consumption and weight. A comparative performance analysis has been carried out in terms of frequency, transient, energy, and power responses. The simulation tests performed to characterize the dynamic behavior of the system have been described along with the promising preliminary results.
2018
9781538646434
actuators
Dielectric elastomers
modeling
vibratory feeder
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/24626
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact