The present paper proposes an effective metrics for production efficiency and a bottleneck detection algorithm of recursive nature for its application on lightweight embedded systems on board of the robotics and automation components of the factory of the future. The proposed methodology is particularly suited if the fractal paradigm is applied to the factory seen as a complex system of systems but with relevant self-similarities across the several layers of components and structures from the shop-floor up to the enterprise level. A performance test has been conducted to demonstrate the viability of the technology for tiny embedded devices with the use of declarative embedded database language. Due to the high scalability of the algorithm and its simplicity, it seems suitable also for the robotic cloud paradigm, where constituent mechatronics, sensors and actuators components are provided as a service. The results provided suggests that, with the use of similar recursive and distributed form of computing, production bottlenecks or fault detection can be scaled to address the complex and pervasive cyber-physical systems problems that characterize the 4th industrial revolution strategies.

A scalable production efficiency tool for the robotic cloud in the fractal factory

PIRANI, MASSIMILIANO
;
2016-01-01

Abstract

The present paper proposes an effective metrics for production efficiency and a bottleneck detection algorithm of recursive nature for its application on lightweight embedded systems on board of the robotics and automation components of the factory of the future. The proposed methodology is particularly suited if the fractal paradigm is applied to the factory seen as a complex system of systems but with relevant self-similarities across the several layers of components and structures from the shop-floor up to the enterprise level. A performance test has been conducted to demonstrate the viability of the technology for tiny embedded devices with the use of declarative embedded database language. Due to the high scalability of the algorithm and its simplicity, it seems suitable also for the robotic cloud paradigm, where constituent mechatronics, sensors and actuators components are provided as a service. The results provided suggests that, with the use of similar recursive and distributed form of computing, production bottlenecks or fault detection can be scaled to address the complex and pervasive cyber-physical systems problems that characterize the 4th industrial revolution strategies.
2016
9781509034741
Embedded systems
Industrial cyberphysical systems
Manufacturing automation
Robotics
Control and Systems Engineering
Electrical and Electronic Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/24662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact