This paper presents an embedded system for a ballbot robotic platform, which is a balanced omnidirectional mobile robot that moves on a sphere. It provides a higher degree of maneuverability compared to the wheeled mobile robots. The robot balances it on a ball and gives to the system only one contact point with the ground. This allows to reduce the frictionand the space needed by the system to turn around a point. This is a major feature for a mobile vehicle, considering that most of them rotate their whole body to obtain a change in direction. The proposed platform is self-contained with on-board sensing and computation, it uses only off-the-shelf components and is designed to perform maneuvers when operating in tight spaces as in the human environments. The proposed embedded system is based on a general pourpose embedded board equipped with a 32bit microcontroller which is able to manage all the basic tasks of this robotic platform: sensing, actuation, control and communication. The proposed system is described and initial experimental results are introduced, furthermore the challenges faced are presented.

Embedded system for a Ballbot robot

PIRANI, MASSIMILIANO;
2015-01-01

Abstract

This paper presents an embedded system for a ballbot robotic platform, which is a balanced omnidirectional mobile robot that moves on a sphere. It provides a higher degree of maneuverability compared to the wheeled mobile robots. The robot balances it on a ball and gives to the system only one contact point with the ground. This allows to reduce the frictionand the space needed by the system to turn around a point. This is a major feature for a mobile vehicle, considering that most of them rotate their whole body to obtain a change in direction. The proposed platform is self-contained with on-board sensing and computation, it uses only off-the-shelf components and is designed to perform maneuvers when operating in tight spaces as in the human environments. The proposed embedded system is based on a general pourpose embedded board equipped with a 32bit microcontroller which is able to manage all the basic tasks of this robotic platform: sensing, actuation, control and communication. The proposed system is described and initial experimental results are introduced, furthermore the challenges faced are presented.
2015
978-88-87548-06-8
Embedded Systems
Autonomous vehicles
Robotics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/24694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact