DevOps has become increasingly widespread, with companies employing its methods in different fields. In this context, MLOps automates Machine Learning pipelines by applying DevOps practices. Considering the high number of tools available and the high interest of the practitioners to be supported by tools to automate the steps of Machine Learning pipelines, little is known concerning MLOps tools and their functionalities. To this aim, we conducted a Multivocal Literature Review (MLR) to (i) extract tools that allow for and support the creation of MLOps pipelines and (ii) analyze their main characteristics and features to provide a comprehensive overview of their value. Overall, we investigate the functionalities of 13 MLOps Tools. Our results show that most MLOps Tools support the same features but apply different approaches that can bring different advantages, depending on user requirements.

A Multivocal Literature Review of MLOps Tools and Features

Fabiano Pecorelli;
2022-01-01

Abstract

DevOps has become increasingly widespread, with companies employing its methods in different fields. In this context, MLOps automates Machine Learning pipelines by applying DevOps practices. Considering the high number of tools available and the high interest of the practitioners to be supported by tools to automate the steps of Machine Learning pipelines, little is known concerning MLOps tools and their functionalities. To this aim, we conducted a Multivocal Literature Review (MLR) to (i) extract tools that allow for and support the creation of MLOps pipelines and (ii) analyze their main characteristics and features to provide a comprehensive overview of their value. Overall, we investigate the functionalities of 13 MLOps Tools. Our results show that most MLOps Tools support the same features but apply different approaches that can bring different advantages, depending on user requirements.
2022
978-1-66546-152-8
Artificial Intelligence,Digital Industry and Space,MLOps,Software Engineering for Artificial Intelligence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/27501
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact