Code smells can compromise software quality in the long term by inducing technical debt. For this reason, many approaches aimed at identifying these design flaws have been proposed in the last decade. Most of them are based on heuristics in which a set of metrics (e.g., code metrics, process metrics) is used to detect smelly code components. However, these techniques suffer of subjective interpretation, low agreement between detectors, and threshold dependability. To overcome these limitations, previous work applied Machine Learning techniques that can learn from previous datasets without needing any threshold definition. However, more recent work has shown that Machine Learning is not always suitable for code smell detection due to the highly unbalanced nature of the problem. In this study we investigate several approaches able to mitigate data unbalancing issues to understand their impact on ML-based approaches for code smell detection. Our findings highlight a number of limitations and open issues with respect to the usage of data balancing in ML-based code smell detection.

On the Role of Data Balancing for Machine Learning-Based Code Smell Detection

Fabiano Pecorelli;
2019-01-01

Abstract

Code smells can compromise software quality in the long term by inducing technical debt. For this reason, many approaches aimed at identifying these design flaws have been proposed in the last decade. Most of them are based on heuristics in which a set of metrics (e.g., code metrics, process metrics) is used to detect smelly code components. However, these techniques suffer of subjective interpretation, low agreement between detectors, and threshold dependability. To overcome these limitations, previous work applied Machine Learning techniques that can learn from previous datasets without needing any threshold definition. However, more recent work has shown that Machine Learning is not always suitable for code smell detection due to the highly unbalanced nature of the problem. In this study we investigate several approaches able to mitigate data unbalancing issues to understand their impact on ML-based approaches for code smell detection. Our findings highlight a number of limitations and open issues with respect to the usage of data balancing in ML-based code smell detection.
2019
978-1-4503-6855-1
Artificial Intelligence,Code Smell Detection,Digital Industry and Space,Empirical Software Engineering,Technical Debt Management
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/27690
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact