In the last few decades, the increasing adoption of computer systems for monitoring and control applications has fostered growing attention to real-time behavior, i.e., the property that ensures predictable reaction times to external events. In this perspective, performance of the interrupt management mechanisms are among the most relevant aspects to be considered. Therefore, the service-latency of interrupts is one of the metrics considered while assessing the predictability of such systems. To this purpose, there are different techniques to estimate it, including the use of on-board timers, oscilloscopes and logic analyzers, or even real-time tracers. Each of these techniques, however, is affected by some degrees of inaccuracy, and choosing one over the other have pros and cons. In this paper, we review methodologies for measuring interrupt-latency from the scientific literature and, for the first time, we define an analytical model that we exploit to figure out measurement errors committed. Finally, we prove the effectiveness of the model relying on measurements taken from Xilinx MPSoC devices and present a case study whose purpose is to validate the proposed model.

A comprehensive evaluation of interrupt measurement techniques for predictability in safety-critical systems

Barone, Salvatore;
2024-01-01

Abstract

In the last few decades, the increasing adoption of computer systems for monitoring and control applications has fostered growing attention to real-time behavior, i.e., the property that ensures predictable reaction times to external events. In this perspective, performance of the interrupt management mechanisms are among the most relevant aspects to be considered. Therefore, the service-latency of interrupts is one of the metrics considered while assessing the predictability of such systems. To this purpose, there are different techniques to estimate it, including the use of on-board timers, oscilloscopes and logic analyzers, or even real-time tracers. Each of these techniques, however, is affected by some degrees of inaccuracy, and choosing one over the other have pros and cons. In this paper, we review methodologies for measuring interrupt-latency from the scientific literature and, for the first time, we define an analytical model that we exploit to figure out measurement errors committed. Finally, we prove the effectiveness of the model relying on measurements taken from Xilinx MPSoC devices and present a case study whose purpose is to validate the proposed model.
2024
Interrupt latency, interrupt measurement tecniques, Computer control systems, Safety engineering, System-on-chip, Comprehensive evaluation, Control applications, Interrupt latency, Interrupt measurement tecniques, Measurement techniques, Monitoring and control, Monitoring applications, Real time behavior, Safety critical systems, Real time systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/44207
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact