In the framework of precision medicine, we investigate the similarity of diabetic kidney disease (DKD) patients through longitudinal data clusters. Starting with insights from category theory, we build patients’ clusters according to the shapes of their trajectories, adopting the Fréchet distance. We group patients according to their behavior of the estimated glomerular filtration rate (eGFR), obtaining informative mean curves. Behavior pattern recognition can shed light on individualized treatments.

Clustering longitudinal data with category theory for diabetic kidney disease

Veronica Distefano;
2021-01-01

Abstract

In the framework of precision medicine, we investigate the similarity of diabetic kidney disease (DKD) patients through longitudinal data clusters. Starting with insights from category theory, we build patients’ clusters according to the shapes of their trajectories, adopting the Fréchet distance. We group patients according to their behavior of the estimated glomerular filtration rate (eGFR), obtaining informative mean curves. Behavior pattern recognition can shed light on individualized treatments.
2021
978-88-5518-340-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/53743
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact