Nowadays many educational institutions crucially need to understand the dynamics at the basis of the university dropout (UD) phe- nomenon. However, the most informative educational data are personal and subject to strict privacy constraints. The challenge is therefore to develop a data driven system which accurately predicts students dropouts while preserving the privacy of individual data instances. In the present paper we investigate this problem, making use of data collected at Univer- sity of Genoa as a case study.

Dropout prediction at university of genoa: A privacy preserving data driven approach

Siri A.;
2017-01-01

Abstract

Nowadays many educational institutions crucially need to understand the dynamics at the basis of the university dropout (UD) phe- nomenon. However, the most informative educational data are personal and subject to strict privacy constraints. The challenge is therefore to develop a data driven system which accurately predicts students dropouts while preserving the privacy of individual data instances. In the present paper we investigate this problem, making use of data collected at Univer- sity of Genoa as a case study.
2017
978-28-758703-9-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/7071
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact