The design and employment of envelope components showing high thermal performances for new buildings and deep renovations must take into account the overall impact of the production process in terms of environmental sustainability. To this end, precast construction solutions and secondary raw materials provide added value to the energy quality of building products. With regard to the abovementioned issues, the paper is focused on the performance optimization of expanded polystyrene-reinforced concrete (EPS-RC) precast bearing walls, already developed and patented within a previous research project entitled “HPWalls. High Performance Wall Systems”, and herein improved according to two complementary requirements: on the one hand, the addition of recycled EPS particles to the concrete mixtures and, thus, the assessment by lab tests of the correlation between the thermal and mechanical properties for several mix-design specimens; on the other hand, a study using analytical simulations of the most suitable joint solutions among modular panels in order to prevent thermal bridges. The achieved results validate the proposed optimization strategies and provide reliable data for market applications in the building sector.

Construction Solutions and Materials to Optimize the Energy Performances of EPS-RC Precast Bearing Walls

Scioti Albina;
2022-01-01

Abstract

The design and employment of envelope components showing high thermal performances for new buildings and deep renovations must take into account the overall impact of the production process in terms of environmental sustainability. To this end, precast construction solutions and secondary raw materials provide added value to the energy quality of building products. With regard to the abovementioned issues, the paper is focused on the performance optimization of expanded polystyrene-reinforced concrete (EPS-RC) precast bearing walls, already developed and patented within a previous research project entitled “HPWalls. High Performance Wall Systems”, and herein improved according to two complementary requirements: on the one hand, the addition of recycled EPS particles to the concrete mixtures and, thus, the assessment by lab tests of the correlation between the thermal and mechanical properties for several mix-design specimens; on the other hand, a study using analytical simulations of the most suitable joint solutions among modular panels in order to prevent thermal bridges. The achieved results validate the proposed optimization strategies and provide reliable data for market applications in the building sector.
2022
Energy performances
precast walls
recycled EPS
thermal bridge correction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/36471
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact