Open-plan offices have lower construction costs, allowing for significant savings in space and, according to designers, facilitate communication between workers, thus, improving collaboration, as well as the exchange of ideas. For these reasons, this type of office has become widespread, while highlighting numerous limitations and various problems. These include the control of anthropic and electromechanical noise. In this study, measurements of the noise emitted by a heating, ventilation, and air conditioning (HVAC) system were carried out in an open-plan office. The average spectral levels in a 1/3 octave band were compared through correlation analysis, to identify any redundant data. A model was then adapted to evaluate the importance of the variables, in order to classify the characteristics, by importance. To reduce the number of predictor variables, a selection analysis of the characteristics was carried out. A subset of predictors was extracted to be used to produce an accurate prediction model. Finally, a model based on recursive partitioning, to detect the operating conditions of an HVAC system, was developed and applied, so as to provide insights into the development and application of this technique, in these contexts. The high accuracy of the model (Accuracy = 0.9981) suggests the adoption of this tool for several applications.

Heating, ventilation, and air conditioning (HVAC) noise detection in open-plan offices using recursive partitioning

Ciaburro, Giuseppe;
2018-01-01

Abstract

Open-plan offices have lower construction costs, allowing for significant savings in space and, according to designers, facilitate communication between workers, thus, improving collaboration, as well as the exchange of ideas. For these reasons, this type of office has become widespread, while highlighting numerous limitations and various problems. These include the control of anthropic and electromechanical noise. In this study, measurements of the noise emitted by a heating, ventilation, and air conditioning (HVAC) system were carried out in an open-plan office. The average spectral levels in a 1/3 octave band were compared through correlation analysis, to identify any redundant data. A model was then adapted to evaluate the importance of the variables, in order to classify the characteristics, by importance. To reduce the number of predictor variables, a selection analysis of the characteristics was carried out. A subset of predictors was extracted to be used to produce an accurate prediction model. Finally, a model based on recursive partitioning, to detect the operating conditions of an HVAC system, was developed and applied, so as to provide insights into the development and application of this technique, in these contexts. The high accuracy of the model (Accuracy = 0.9981) suggests the adoption of this tool for several applications.
2018
Feature selection
HVAC noise
Open plan office
Random forest
Recursive partitioning
Workplace noise
Architecture2300 Environmental Science (all)
Civil and Structural Engineering
Building and Construction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/37189
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact