We consider the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility in a bounded domain \Omega, d\leq 3. We first prove the existence of maximal strong solutions in weighted (in time) L^p spaces. Then we establish further regularity properties of the solution through maximal regularity theory. Finally, we revisit the separation property in an appendix.

Regularity results for the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility

Frigeri, Sergio;
2021-01-01

Abstract

We consider the nonlocal Cahn-Hilliard equation with singular potential and degenerate mobility in a bounded domain \Omega, d\leq 3. We first prove the existence of maximal strong solutions in weighted (in time) L^p spaces. Then we establish further regularity properties of the solution through maximal regularity theory. Finally, we revisit the separation property in an appendix.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/45163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact