In this paper, we study a semilinear weakly damped wave equation equipped with an acoustic boundary condition. The problem can be considered as a system consisting of the wave equation describing the evolution of an unknown function u = u(x, t), x is an element of Omega in the domain coupled with an ordinary differential equation for an unknown function delta = delta(x, t), x is an element of Gamma := partial derivative Omega on the boundary. A compatibility condition is also added due to physical reasons. This problem is inspired on a model originally proposed by Beale and Rosencrans (Bull Am Math Soc 80: 1276-1278, 1974). The goal of the paper is to analyze the global asymptotic behavior of the solutions. We prove the existence of an absorbing set and of the global attractor in the energy phase space. Furthermore, the regularity properties of the global attractor are investigated. This is a difficult issue since standard techniques based on the use of fractional operators cannot be exploited. We finally prove the existence of an exponential attractor. The analysis is carried out in dependence of two damping coefficients.

Attractors for semilinear damped wave equations with an acoustic boundary condition

Frigeri S
2010-01-01

Abstract

In this paper, we study a semilinear weakly damped wave equation equipped with an acoustic boundary condition. The problem can be considered as a system consisting of the wave equation describing the evolution of an unknown function u = u(x, t), x is an element of Omega in the domain coupled with an ordinary differential equation for an unknown function delta = delta(x, t), x is an element of Gamma := partial derivative Omega on the boundary. A compatibility condition is also added due to physical reasons. This problem is inspired on a model originally proposed by Beale and Rosencrans (Bull Am Math Soc 80: 1276-1278, 1974). The goal of the paper is to analyze the global asymptotic behavior of the solutions. We prove the existence of an absorbing set and of the global attractor in the energy phase space. Furthermore, the regularity properties of the global attractor are investigated. This is a difficult issue since standard techniques based on the use of fractional operators cannot be exploited. We finally prove the existence of an exponential attractor. The analysis is carried out in dependence of two damping coefficients.
2010
exponential attractors
asymptotic-behavior
system
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/4603
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact