Here we consider a Cahn-Hilliard-Navier-Stokes system characterized by a nonlocal Cahn-Hilliard equation with a singular (e.g., logarithmic) potential. This system originates from a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids. We have already analyzed the case of smooth potentials with arbitrary polynomial growth. Here, taking advantage of the previous results, we study this more challenging (and physically relevant) case. We first establish the existence of a global weak solution with no-slip and no-flux boundary conditions. Then we prove the existence of the global attractor for the 2D generalized semiflow (in the sense of J.M. Ball). We recall that uniqueness is still an open issue even in 2D. We also obtain, as byproduct, the existence of a connected global attractor for the (convective) nonlocal Cahn-Hilliard equation. Finally, in the 3D case, we establish the existence of a trajectory attractor (in the sense of V.V. Chepyzhov and M.I. Vishik).
Nonlocal Cahn-Hilliard-Navier-Stokes systems with singular potentials
Frigeri S;
2012-01-01
Abstract
Here we consider a Cahn-Hilliard-Navier-Stokes system characterized by a nonlocal Cahn-Hilliard equation with a singular (e.g., logarithmic) potential. This system originates from a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids. We have already analyzed the case of smooth potentials with arbitrary polynomial growth. Here, taking advantage of the previous results, we study this more challenging (and physically relevant) case. We first establish the existence of a global weak solution with no-slip and no-flux boundary conditions. Then we prove the existence of the global attractor for the 2D generalized semiflow (in the sense of J.M. Ball). We recall that uniqueness is still an open issue even in 2D. We also obtain, as byproduct, the existence of a connected global attractor for the (convective) nonlocal Cahn-Hilliard equation. Finally, in the 3D case, we establish the existence of a trajectory attractor (in the sense of V.V. Chepyzhov and M.I. Vishik).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.