We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier–Stokes system coupled with a convective non-local Cahn–Hilliard equation with non-constant mobility. We first prove the existence of a global weak solution in the case of non-degenerate mobilities and regular potentials of polynomial growth. Then we extend the result to degenerate mobilities and singular (e.g. logarithmic) potentials. In the latter case we also establish the existence of a global attractor in dimension two. Using a similar technique, we show that there is a global attractor for the convective non-local Cahn–Hilliard equation with degenerate mobility and singular potential in dimension three.

A diffuse interface model for two-phase incompressible flows with nonlocal interactions and nonconstant mobility

S. Frigeri;
2015-01-01

Abstract

We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier–Stokes system coupled with a convective non-local Cahn–Hilliard equation with non-constant mobility. We first prove the existence of a global weak solution in the case of non-degenerate mobilities and regular potentials of polynomial growth. Then we extend the result to degenerate mobilities and singular (e.g. logarithmic) potentials. In the latter case we also establish the existence of a global attractor in dimension two. Using a similar technique, we show that there is a global attractor for the convective non-local Cahn–Hilliard equation with degenerate mobility and singular potential in dimension three.
2015
Navier–Stokes equations
non-local Cahn–Hilliard equations
degenerate mobility
incompressible binary fluids
weak solutions
global attractors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/4614
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact