Large-scale deployment of renewable energy sources brings new challenges for smart grid management requiring the development of decentralized solutions and active participation of prosumer and nongrid-owned assets. Local energy flexibility markets can help in monitoring energy flows, motivate changes in prosumers’ energy supply and demand, achieving local energy balance, and optimization of electricity flows. In this paper, we propose a blockchain-based decentralized energy flexibility market enabling small-scale prosumers to trade in a peer-to-peer fashion their flexibility in terms of load modulation concerning the baseline energy profiles. We have defined an energy flexibility token for digitizing the flexibility of prosumers allowing to be traded on the market as an asset and self-enforcing smart contracts for decentralized market operation including functions such as the placement of flexibility bids/offers, trading session management, or energy and financial settlement of energy flexibility transactions. For matching the flexibility bids and offers, a solution based on a greedy heuristic and a bipartite graph is proposed for minimizing the number of flexibility transactions and reducing the blockchain-associated costs, while Oracles are used to assure its secure integration with the blockchain. The blockchain-based flexibility market was validated with the help of the Terni city Distribution System Operator, showing promising results in enabling the self-consumption of renewable energy generated in a small scale urban micro-grid considering live energy monitoring data, and in assuring the local balancing of the demand side in a simulated environment considering many market participants and historical energy data.

Blockchain based decentralized local energy flexibility market

Carere, Federico;
2021-01-01

Abstract

Large-scale deployment of renewable energy sources brings new challenges for smart grid management requiring the development of decentralized solutions and active participation of prosumer and nongrid-owned assets. Local energy flexibility markets can help in monitoring energy flows, motivate changes in prosumers’ energy supply and demand, achieving local energy balance, and optimization of electricity flows. In this paper, we propose a blockchain-based decentralized energy flexibility market enabling small-scale prosumers to trade in a peer-to-peer fashion their flexibility in terms of load modulation concerning the baseline energy profiles. We have defined an energy flexibility token for digitizing the flexibility of prosumers allowing to be traded on the market as an asset and self-enforcing smart contracts for decentralized market operation including functions such as the placement of flexibility bids/offers, trading session management, or energy and financial settlement of energy flexibility transactions. For matching the flexibility bids and offers, a solution based on a greedy heuristic and a bipartite graph is proposed for minimizing the number of flexibility transactions and reducing the blockchain-associated costs, while Oracles are used to assure its secure integration with the blockchain. The blockchain-based flexibility market was validated with the help of the Terni city Distribution System Operator, showing promising results in enabling the self-consumption of renewable energy generated in a small scale urban micro-grid considering live energy monitoring data, and in assuring the local balancing of the demand side in a simulated environment considering many market participants and historical energy data.
2021
local flexibility market
peer-to-peer flexibility trading
blockchain
bids and offers matching
Oracles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/46219
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact