In this paper, we consider a two-dimensional diffuse interface model for the phase separation of an incompressible and isothermal binary fluid mixture with matched densities. This model consists of the Navier–Stokes equations, nonlinearly coupled with a convective nonlocal Cahn–Hilliard equation. The system rules the evolution of the (volume-averaged) velocity u of the mixture and the (relative) concentration difference φ of the two phases. The aim of this work is to study an optimal control problem for such a system, the control being a time-dependent external force v acting on the fluid. We first prove the existence of an optimal control for a given tracking type cost functional. Then we study the differentiability properties of the control-to-state map v↦ [ u, φ] , and we establish first-order necessary optimality conditions. These results generalize the ones obtained by the first and the third authors jointly with Rocca (SIAM J Control Optim 54:221–250, 2016). There the authors assumed a constant mobility and a regular potential with polynomially controlled growth. Here, we analyze the physically more relevant case of a degenerate mobility and a singular (e.g., logarithmic) potential. This is made possible by the existence of a unique strong solution which was recently proved by the authors and Gal (WIAS preprint series No. 2309, Berlin, 2016).

Optimal distributed control of two-dimensional nonlocal Cahn--Hilliard--Navier--Stokes systems with degenerate mobility and singular potential

Frigeri S;
2018-01-01

Abstract

In this paper, we consider a two-dimensional diffuse interface model for the phase separation of an incompressible and isothermal binary fluid mixture with matched densities. This model consists of the Navier–Stokes equations, nonlinearly coupled with a convective nonlocal Cahn–Hilliard equation. The system rules the evolution of the (volume-averaged) velocity u of the mixture and the (relative) concentration difference φ of the two phases. The aim of this work is to study an optimal control problem for such a system, the control being a time-dependent external force v acting on the fluid. We first prove the existence of an optimal control for a given tracking type cost functional. Then we study the differentiability properties of the control-to-state map v↦ [ u, φ] , and we establish first-order necessary optimality conditions. These results generalize the ones obtained by the first and the third authors jointly with Rocca (SIAM J Control Optim 54:221–250, 2016). There the authors assumed a constant mobility and a regular potential with polynomially controlled growth. Here, we analyze the physically more relevant case of a degenerate mobility and a singular (e.g., logarithmic) potential. This is made possible by the existence of a unique strong solution which was recently proved by the authors and Gal (WIAS preprint series No. 2309, Berlin, 2016).
2018
Degenerate mobility
Distributed optimal control
First-order necessary optimality conditions
Incompressible binary fluids
Navier–Stokes equations
Nonlocal Cahn–Hilliard equations
Phase separation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/4625
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact