We consider a diffuse interface model for the phase separation of an incompressible and isothermal non-Newtonian binary fluid mixture in three dimensions. The averaged velocity u is governed by a Navier-Stokes system with a shear dependent viscosity controlled by a power p > 2. This system is nonlinearly coupled through the Korteweg force with a convective nonlocal Cahn-Hilliard equation for the order parameter phi, that is, the (relative) concentration difference of the two components. The resulting equations are endowed with the no-slip boundary condition for is and the no-flux boundary condition for the chemical potential mu. The latter variable is the functional derivative of a nonlocal and nonconvex Ginzburg-Landau type functional which accounts for the presence of two phases. We first prove the existence of a weak solution in the case p >= 11/5. Then we extend some previous results on time regularity and uniqueness if p > 11/5.

Nonlocal Cahn–Hilliard–Navier–Stokes systems with shear dependent viscosity

Frigeri S.;
2018-01-01

Abstract

We consider a diffuse interface model for the phase separation of an incompressible and isothermal non-Newtonian binary fluid mixture in three dimensions. The averaged velocity u is governed by a Navier-Stokes system with a shear dependent viscosity controlled by a power p > 2. This system is nonlinearly coupled through the Korteweg force with a convective nonlocal Cahn-Hilliard equation for the order parameter phi, that is, the (relative) concentration difference of the two components. The resulting equations are endowed with the no-slip boundary condition for is and the no-flux boundary condition for the chemical potential mu. The latter variable is the functional derivative of a nonlocal and nonconvex Ginzburg-Landau type functional which accounts for the presence of two phases. We first prove the existence of a weak solution in the case p >= 11/5. Then we extend some previous results on time regularity and uniqueness if p > 11/5.
2018
Non-Newtonian fluids
Nonlocal Cahn–Hilliard equations
Regularity
Uniqueness
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/4630
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact