Within the context of quasi-brittle fracture mechanics analyzed by finite element approaches, the present research addresses an implicit solution scheme applied to a strain-gradient continuum damage model. The implicit scheme is based onto an iterative procedure which minimizes for each loading step the increment of both the elastic energy and the damage field between two subsequent trial solutions. The performances of the proposed scheme are compared with those of a previously developed explicit scheme. Besides a better accuracy in the static response computation, it is demonstrated that the proposed approach provides more accurate fracture propagation patterns.

An implicit computational approach in strain-gradient brittle fracture analysis

Placidi, Luca
2024-01-01

Abstract

Within the context of quasi-brittle fracture mechanics analyzed by finite element approaches, the present research addresses an implicit solution scheme applied to a strain-gradient continuum damage model. The implicit scheme is based onto an iterative procedure which minimizes for each loading step the increment of both the elastic energy and the damage field between two subsequent trial solutions. The performances of the proposed scheme are compared with those of a previously developed explicit scheme. Besides a better accuracy in the static response computation, it is demonstrated that the proposed approach provides more accurate fracture propagation patterns.
2024
Brittle fracture
Fracture mechanics
Strain-gradient modeling
Variational principles
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12607/61842
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact